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This paper extends previous studies made for sectorial plates having re-entrant

(i.e., interior) corners causing stress singularities, to provide accurate frequencies when

the circular edge is either clamped or simply-supported. An extensive review of the

literature is also given herein spanning nearly the past two decades explaining the free

employed with two sets of admissible functions assumed for the transverse vibratory

displacements. These sets include: (1) mathematically complete algebraic–trigono-

metric polynomials which guarantee convergence to exact frequencies as sufficient

terms are retained and (2) corner functions which account for the bending moment

singularities at the re-entrant vertex corner of the radial edges having arbitrary edge

conditions. Extensive convergence studies summarized herein confirm that the corner

functions substantially enhance the convergence and accuracy of non-dimensional

frequencies for sectorial plates having either a clamped or hinged circumferential edge

and various combinations of clamped, hinged, and free conditions on the radial edges.

Accurate (to at least four significant figure) frequencies and normalized contours of the

transverse vibratory displacement are presented for the spectra of sector angles

[901, 1801 (semi-circular), 2701, 3001, 3301, 3501, 3551, 3601 (complete circular)] causing

a re-entrant vertex corner of the radial edges. For sector angles of 3601, a clamped–

clamped, clamped–hinged, clamped–free, hinged–free or free–free radial crack ensues.

One general observation is the substantial reduction in the first six frequencies as

the sector angle increases for all plates, except in the first two modes of plates having

free–free radial edges.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Documented in the literature spanning nearly two centuries are hundreds of technical publications explaining the free
vibration characteristics of complete circular and annular plates with various support conditions along the circumferential
boundaries or at interior points. Extensive narratives of this large body of work have been chronicled in a summarizing
monograph [1] and a series of review articles [2–4]. The scope of previous work done for the sectorial plate (see Fig. 1),
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Fig. 1. Geometric description of a sectorial plate.
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in comparison, is somewhat smaller, albeit extensive, as described in detail in the next section. Here, an extensive review of
the literature covers over the past two decades of approximately a hundred publications elucidating the free vibration
characteristics of sectorial plates. Several authors have offered approximate theoretical and experimental vibration data for
thin sectorial and annular sector plates with various edge conditions on the circular and radial edges, namely Ben-Amoz
[5], Westmann [6], Bhattacharya and Bhowmic [7], Rubin [8], Ramakrishnan and Kunukkasseril [9], Irie et al. [10],
Maruyama and Ichinomiya [11], Kim and Dickinson [12], and Mizusawa [13,14]. Bapu Rao et al. [15] and Guruswamy and
Yang [16] proposed various Reissner sector plate finite element formulations for approximate vibration analysis of thick
circular and annular sectorial plates. Cheung and Chan [17] offered a three-dimensional curved finite strip method for
static and vibration analyses of thin and thick sectorial plates with arbitrary conditions on the circular and radial edges.
Srinivasan and Thiruvenkatachari [18,19] reported natural frequencies of moderately thick Mindlin and laminated
composite annular sector plates with clamped circular and radial edges. Indeed, these investigations collectively provide a
solid groundwork for gaining a proper perspective of the significance of the title problem in the vibration literature.

Exact solutions for frequencies and mode shapes have long been known to exist for sectorial plates having simply-
supported radial edges, with arbitrary boundary conditions along the circular edge [1]. However, it has been shown [20,21]
that such solutions are not applicable when the sector angle a exceeds 1801 (forming a re-entrant corner, see Fig. 1). An
exact solution for this situation involves non-integer order ordinary and modified Bessel functions of the first and second
kinds, and particular relationships among the four constants of integration to satisfy the corner stress singularities
properly. This analytical procedure has been extended to the flexural vibrations of thick sectorial plates having simply-
supported radial edges forming re-entrant corners [22] using Mindlin plate theory. The Mindlin sectorial plates call for a
Bessel function solution similar to that of classical thin plates, but with six, instead of four, interrelated constants of
integration.

In spite of the existence of a number of semi-analytical solutions [23,14], one finds it intractable to derive exact
solutions for sectorial plates with other combinations of clamped, simply-supported, and free radial edges (i.e., not both
edges simply-supported). In fact, little published vibration data exists for such sectorial plates with re-entrant angles
(a41801) or for the special case of a semi-circular plate (a=1801), albeit a substantial amount of data exist for salient
angles (ao1801) [12]. In some recent papers incorporating corner stress singularity effects [20–22,24–26], accurate
(five significant figure) frequencies and mode shapes were presented for sectorial plates with free circumferential edge and
clamped or free radial edges, and for completely free circular plates with rigidly constrained or free V-notches.

The present work examines sectorial plates having either a clamped or simply-supported circumferential edge, and all
combinations of clamped, simply-supported, and free radial edges, including stress singularity effects at the sharp vertex
corner (see Fig. 1). For a very small notch angle, 3601-a (say, one degree or less), a deep, rigidly constrained, hinged, or free
radial crack ensues. A Ritz procedure is employed in which the transverse displacement field is approximated as a hybrid
set of trial functions consisting of a complete set of admissible algebraic–trigonometric polynomials in conjunction with an
admissible set of corner functions that exactly model the singular vibratory moments which exist at the vertices of corner
angles (a) which exceed 1801 [27,28]. The first set guarantees convergence to exact frequencies as sufficient terms are
retained. The second set substantially accelerates the convergence of frequencies, which is demonstrated through
convergence studies summarized herein. Accurate non-dimensional frequencies are presented as the sector angle a is
varied. To better understand the effects of the stress singularities existing in the title problem, normalized contour plots of
the vibratory transverse displacements are studied for plates having sector angles a=901, 1801 (semi-circular), 2701, 3001,
3301, 3551, and 3601 (sharp radial crack).

2. Background

2.1. Recent studies of sector plate vibrations

Jomehzadeh and Saidi [29] provided recently an exact analytical solution for the free vibration of an isotropic sector
Mindlin plate having simply-supported radial edges and arbitrary conditions along the circular edge. By introducing
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a boundary layer function the three coupled governing equations of motion were converted into two uncoupled equations
solved satisfying the boundary conditions for the natural frequencies. Non-dimensional frequency parameters were
reported for a wide range of salient (ar180) and re-entrant (180oar360) angles, thickness–radius ratios and various
boundary conditions along the circular edge.

Based on the Levinson plate theory and the first-order shear deformation plate theory, the bending analysis of
functionally graded thick circular sector plates was provided by Sahraee [30]. The non-homogeneous mechanical
properties of plate, graded through the thickness, were described by a power function of the thickness coordinate.
Closed-form Levinson plate bending solutions of functionally graded sectorial plates were expressed in terms of the solutions
of the classical plate theory for homogeneous sectorial plates and verified with previously published known solutions.

In this study, Aghdam and Mohommadi [31] bending analysis of a moderately thick orthotropic sector plate subjected
to various loading conditions is presented. Different boundary conditions, including clamped, simply-supported, and free
were considered. The governing equations, assuming Reissner shear deformation theory, include eight first-order partial
differential equations in terms of r and y with eight unknowns, i.e., displacements, rotations, bending and twisting
moments, and shear forces within the domain. Assuming unknown variables, as separable functions of r and y together
with an extended Kantorovich method resulted to dual sets of eight first-order ordinary differential equations, which
were solved iteratively. Aghdam and Mohommadi [31] showed that a Kantorovich-based approach provided accurate
predictions for all displacement and stress resultant components with very fast convergence, when the accuracy of the
predicted results were examined against other published data in the literature. Finite element analysis was also used to
validate results for a wide range of loading and boundary conditions of sector plates.

Sharma et al. [32] presented a simple formulation for the nonlinear dynamic analysis of shear deformable laminated
sector plates made up of cylindrically orthotropic layers. Transverse bending motions were approximated as in Sharma
et al. [33]. Convergence of frequencies for square plates having several combinations of simply-supported, clamped, and
free edge conditions was considered. Several additional effects were examined by Sharma et al. [32] including boundary
conditions, moduli ratio, lamination scheme, sector angle, and annularity on the transient deflection response, comparing
step, saw-tooth, and sinusoidal loadings.

An earlier study of Sharma et al. [33] proposed a simple analytical formulation for the eigenvalue problem of buckling
and free vibration analysis of shear deformable laminated sector plates of cylindrically orthotropic layers. The
non-axisymmetric formulation in cylindrical coordinates was idealized in polar domain by assuming two-dimensional
Chebyshev polynomials for transverse bending motions, and in the time domain by adopting a Houbolt time marching
scheme with a quadratic extrapolation technique. Extensive results pertaining to critical buckling loads and natural
frequencies were presented. Convergence of solutions for square plates having several combinations of simply-supported,
clamped, and free edge conditions was considered, and the obtained results are compared with the results of laminated
square plates and isotropic sector plates available in literature. Effects of boundary conditions, number of layers, moduli
ratio, rotary and in-plane inertia, plate thickness, sector angle, and annularity were also investigated.

Wang and Wang [34] offered a differential quadrature method extended to analyze the free vibration of thin sector
plates with various sector angles and six combinations of boundary conditions. Numerical results compared with existing
analytical and/or numerical data indicate that convergence can be achieved with increase in number of grid points and,
resulting in accurate results obtained using a 9�9 differential quadrature grid or higher.

Huang and Ho [35] offered a first known analytical solution for vibrations of a polar orthotropic Mindlin sectorial plate
with simply-supported radial edges. The solution was a series solution constructed using the Frobenius method and
exactly satisfies not only the boundary conditions along the radial and circular edges, but also the regularity conditions at
the vertex of the radial edges. The moment and shear force singularities at the vertex were exactly considered in the
solution. The correctness of the proposed solution was confirmed by comparing non-dimensional frequencies of isotropic
plates obtained from the present solution with published data obtained from a closed-form solution [21,22]. Huang and Ho
[35] also investigated the effects of elastic and shear moduli on the vibration frequencies of the sectorial plates with free or
fix boundary conditions along the circumferential edge. A study was also carried out about the influence of elastic and
shear moduli on the moment and shear force singularities at the plate origin (r=0) for different vertex angles.

A sector Fourier p-element for free vibration analysis of sectorial membranes was presented in Houmat [36]. The
element transverse displacement was described by a fixed number of linear polynomial shape functions plus a variable
number of trigonometric shape functions in the radial and circumferential directions. The polynomial shape functions were
used to describe the element’s nodal displacements and the trigonometric shape functions was used to provide additional
freedom to the edges and the interior of the element. A number of simply-supported sectorial membranes were analyzed
and solutions were compared against exact solutions as well as approximate ones using conventional sector linear finite
element analysis procedures. Houmat [36] recently proposed a sector Fourier p-element applied to the transverse free
vibration analysis of sectorial plates. The element was formulated in terms of a fixed number of cubic polynomial shape
functions plus a variable number of trigonometric hierarchical shape functions. The cubic polynomial shape functions were
used to describe the element’s nodal degrees of freedom and the trigonometric hierarchical shape functions were used to
give additional freedom to the edges and the interior of the element. Results were obtained for a number of sectorial plates
with various boundary conditions and comparisons were made with exact and 16 degrees of freedom sector finite element
solutions. Primary findings revealed that the solutions converged rapidly from above relative to exact values as the number
of sector Fourier p-element trigonometric terms was increased requiring relatively few terms to achieve accurate sector
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plate vibration solutions. Generally speaking, the Houmat sector Fourier p-element [36,37] yielded greater accuracy than
the conventional 16 degrees of freedom sector finite element with fewer system degrees of freedom.

Variational procedures of representing stiffened sector plates of variable radial rigidity and thickness and resting on
elastic foundations were proposed in a series of papers by Molaghasemi and Harik [38–40]. Similar variational approaches
of discretizing the total energy of free flexural vibration of orthotropic curved plates in polar coordinates by the method of
finite differences was adopted by Singh and Dey [41]. Here, a principle of minimization of the total energy was applied in
succession with respect to each discrete displacement which yielded characteristic equations for frequencies and modes of
isotropic and orthotropic sector plates.

The free vibration analysis of moderately thick sector plates based on Mindlin’s first-order shear deformation theory
was examined in Liu and Liew [42] using the differential quadrature (DQ) method in two-dimensional polar coordinate
system. Convergence and comparison studies of the first eight frequency parameters were computed for sector plates
examining the effects of different boundary conditions, relative thickness ratios, and sector angles (301rar3601) on the
frequency parameter solutions reported.

Liew and Yang [43] presented accurate three-dimensional elasticity solutions for free vibration of circular plates,
deriving in detail the associated frequency equations using the Ritz method with a set of orthogonal polynomial series to
approximate the spatial displacements of the circular plate in cylindrical polar coordinates. The perturbation of frequency
responses due to the variations of boundary conditions and thickness was investigated. Frequency parameters and three-
dimensional deformed mode shapes were presented and the accuracy of these results verified by appropriate convergence
studies and validated against previously published solutions.

Young and Dickinson [44] employed the Ritz method to obtain a system of characteristic algebraic equations governing
the free vibration of a class of thin, flat plates which involve curved boundaries defined by polynomial expressions. The
class of plates is such that each plate were discretized into four 901 sectorial elements allowing the modeled plates to have
up to four sections of outer boundary and up to four sections of inner boundary, each described by polynomials. In the
absence of symmetry, or where it is not utilized, the elements were joined together through the use of very stiff
translational and rotational springs which enforce the required continuity conditions. The effects of various complicating
aspects, such as the presence of internal point or line supports, concentrated masses, and stepped thickness geometry,
were also examined on natural frequency parameters of several plates for which comparison results were made with those
existing in the published literature and the accuracy of the Young and Dickinson Ritz approach [44] was validated.
Additional results were also given for several curved plates of varying complexity which were previously not treated in the
open literature.

The real time technique of time-averaged holographic interferometry has been applied by Maruyama and Ichinomiya
[11] to determine the natural frequencies and the corresponding mode shapes for the transverse vibrations of clamped
wedge-shaped and ring-shaped sector plates. Over 200 resonant modes were obtained for wedge-shaped sector plates and
over 170 for ring-shaped sector plates. The natural frequencies obtained were expressed in terms of a dimensionless
frequency parameter, and graphical charts were given depicting how these frequency parameters vary as a function of the
sector angle for the wedge-shaped plates and of the radii ratio for the ring-shaped sector plates, respectively. Maruyama
and Ichinomiya [11] findings of free vibration characteristics for wedge-shaped plates were compared with the analytical
values obtained by other authors.

The free vibration of ring-shaped polar-orthotropic sector plates was analyzed by Irie et al. [10,45] using the Ritz
method incorporating a spline function as an admissible function for the deflection of the plates, and to the study of
vibration problems of variously shaped anisotropic plates including these sector plates. The transverse deflection of a
sector plate was approximated as a series of the products of the deflection function of a sectorial beam and that of a
circular beam satisfying the boundary conditions. The deflection function of the sectorial beam was approximately
expressed by a quintic spline function, which satisfies the equation of flexural vibration of the beam at each point,
essentially discretizing the beam into small elements. The frequency equation of the plate was derived by the conditions
for a stationary value of the Lagrangian. Irie et al. [10,45] applied their method to predict a wide spectrum of natural
frequencies and mode shapes of ring-shaped polar-orthotropic sector plates with various combinations of boundary
conditions.

Two and three-dimensional finite strips are developed in Cheng and Chan [46] for the analysis of thin and thick sectorial
plates, both of isotropic or orthotropic material, of constant or variable thickness, and of various combinations of boundary
conditions. The displacement functions for the finite strips comprised of polynomial shape functions and beam
eigenfunctions. The 2-D finite strips were derived based on plate bending theory incorporating out-of-plane displacement
and the slope nodal degrees of freedom. The 3-D finite strips were formulated using three-dimensional elasticity
constitutive equations, and the three displacement components in a cylindrical coordinate system were chosen as the
nodal degrees of freedom. Non-dimensional frequency solutions predicted by Cheng and Chan [46] involving various
boundary conditions, radii and subtended angles compared favorably with those of existing solutions in the published
literature.

Bucco et al. [47] combined the finite strip method with the deflection contour method in the analysis of bending
and fundamental frequency prediction of thin elastic plates of arbitrary shape. Several representative plate
problems of irregular boundaries were examined and favorable comparison of results was made with other known
solutions.
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A 24 degree of freedom sector finite element was developed for the static and dynamic analysis of thick circular plates
in Guruswamy and Yang [48] based on Reissner’s thick plate theory. The elements were used to analyze the natural
frequencies of an annular plate with various ratios of inner to outer radius, as well as free vibrations of clamped sector
plates with various thicknesses and different sectorial angles, showing findings in good agreement with an alternative
solution in which thick plate theory was used.

Circular segment shaped plates were analyzed by Khurasia and Rawtani [49] using curved-sided triangular plate
bending finite elements to determine their natural frequencies and mode shapes of vibration, discussing effects of variation
of plate size on the vibratory characteristics. Bhattacharya et al. [50] and Bhattacharya and Bhowmic [51]considered
complicating effects of large amplitudes on the free vibration of sectorial plates.

Solutions of nodal circles and natural frequencies of free vibrations for an isotropic clamped wedge-shaped plate were
reported in an early paper by Rubin [8]. These findings may be used in conjunction with an available solution for the nodal
radii to find all natural frequencies (including mixed modes). The Rubin solution may also be applied to a ring-shaped
sector having arbitrary boundary conditions along its circular edges.

About this same time, Cheung and Kwok [52] developed a Mindlin shear deformable plate bending finite element
method to analyze the free vibrations of laminated thick plates with curved boundaries for handling in polar coordinates
annular as well as circular laminated anisotropic plate vibration problems. Numerical results are presented to demonstrate
the influence of geometrical shape as well as that of thickness-shear deformation on the free vibrations of both
homogeneous and layered plates. Comparisons between the numerical results obtained and those presented by other
investigators conveyed the accuracy of the Cheung–Kwok [52] Mindlin plate finite element analysis. It was also suggested
that in the limit such finite element analyses can be also used to analyze rectangular thick plate vibrations by assuming
very large radii and very small subtended angle values.

The classical Rayleigh-Ritz method in conjunction with suitable coordinate transformations was suggested by
Ramaiah and Vijayakumar [53] and Ramaiah [54] to be effective for accurate estimation of natural frequencies
of circumferentially truncated circular sector plates with simply-supported straight edges. An extensive amount of
non-dimensional frequencies were reported for all the nine combinations of clamped, simply-supported, and free
boundary conditions at the circular edges and presented in the form of graphs. Works of Ramaiah and Vijayakumar [53]
and Ramaiah [54] confirmed earlier observations that sector plate vibrations is analogous to those of a long rectangular
strip as the width of the plate in the radial direction becomes small in the limit.
2.2. Recent sector plate vibration studies including complicating effects of stress singularities

A method was recently presented by Huang et al. [55] for accurately determining the natural frequencies of rectangular
plates having V-notches along their edges. Based on the Ritz method two sets of admissible functions simultaneously were
utilized including (1) algebraic polynomials from a mathematically complete set of functions and (2) corner functions
addressing the boundary conditions along the edges of the notch, and describing the stress singularities at its sharp vertex
exactly. The method was demonstrated for free, square plates with a single V-notch. The effects of corner functions on the
convergence of solutions were shown through comprehensive convergence studies. The corner functions accelerated
convergence of results significantly. Accurate numerical results for free vibration frequencies and nodal patterns were
tabulated for V-notched square plates having notch angle a=51 or 301 at different locations and with various notch depths.
Huang et al. [55] findings provided the first known frequency and nodal pattern results available in the published literature
for rectangular plates with V-notches.

Describing the behaviors of stress singularities correctly is essential for obtaining accurate numerical solutions of
complicated problems with stress singularities. Derived are asymptotic solutions for functionally graded material (FGM)
thin plates in Huang and Chang [56] and FGM thick plates in Huang et al. [57] with geometrically induced stress
singularities. The classical thin-plate theory was employed in Huang and Chang [56] and Lo’s higher-order shear
deformable plate theory was utilized in Huang et al. [57] to establish the equilibrium equations for FGM thin and thick
plates. Young’s modulus was assumed to vary along the thickness and Poisson’s ratio was set constant. An eigenfunction
expansion procedure employed to the equilibrium equations in terms of displacement components for an asymptotic
analysis in the vicinity of a sharp corner. The characteristic equations for determining the stress singularity order at the
corner vertex and the corresponding corner functions were explicitly given for different combinations of boundary
conditions along the radial edges forming the sharp corner. The non-homogeneous elasticity properties were present only
in the characteristic equations corresponding to boundary conditions involving simple supports. In addition, the effects of
material non-homogeneity following a power law on the stress singularity orders were examined by showing the
minimum real values of the roots of the characteristic equations varying with the material properties and vertex angle.

The stress singularities in angular corners of plates of arbitrary thickness with various boundary conditions subjected to
in-plane loading were studied by Kotousov and Lew [58] within the first-order plate theory. By adapting an eigenfunction
expansion approach a set of characteristic equations for determining the structure and orders of singularities of the stress
resultants in the vicinity of the vertex was developed. The characteristic equations derived in this paper incorporate that
obtained within the classical plane theory of elasticity (M.L. Williams’ solution) and also describe the possible singular
behavior of the out-of-plane shear stress resultants induced by various boundary conditions.
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Using Lo’s high-order shear deformable plate theory, Huang [59] applied the eigenfunction expansion approach to
investigating the Williams-type stress singularities at the vertex of a wedge. The characteristic equations for determining
the orders of singularities in stress resultants were separately developed for plates under extension and bending. The
characteristic equations of plates under extension differ from those in generalized plane stress cases when the clamped
boundary condition was imposed along one of the radial edges around the vertex. For plates under bending, the presented
characteristic equations were identical to those of first-order shear deformation plate theory (FSDPT), if the clamping was
not involved in boundary conditions along the radial edges of the vertex. The orders of singularities in stress resultants,
which vary with the vertex angle, were plotted for various types of boundary conditions. Huang’s solutions [59] were also
comprehensively compared with those obtained according to other plate theories such as classical plate theory, FSDPT and
Reddy’s refined plate theory.

An eigenfunction expansion solution was first developed in Huang [60] to find stress singualarities for bi-material
wedges by directly solving the governing equations of the Mindlin plate theory in terms of displacement components. The
singularity orders of moments and shear forces at corners were determined from the corresponding asymptotic solutions
having the lowest order in r and satisfying the radial boundary conditions and continuity conditions. Huang applied his
solution to thoroughly examine the singularities occurring at the interface joint of bonded dissimilar isotropic plates and at
the vertex of a bi-material wedge with two simply-supported radial edges. The corresponding characteristic equations for
determining the singularity orders of moments and shear forces were explicitly given in Huang [60]. The singularity orders
of moment were shown in graphic form as functions of the flexural rigidity ratio and corner angle, while shear force
singularity orders were given as functions of the corner angle and the shear modulus ratio multiplied by the thickness
ratio. The order of moment singularity obtained here for bonded dissimilar plates was also compared with that based on
the classical plate theory.

Suggesting numerous areas for further studies by researchers in the literature, Leissa [61] describes three types of
situations in structural analysis where singularities at points can greatly influence the global behavior of the configuration:
(1) concentrated forces acting upon flat or curved membranes, (2) concentrated moments acting upon plates or shells, and
(3) sharp corner singularities in plates and shells. These singularities may have strong effects upon static or dynamic
deflections, free vibration frequencies, and buckling loads. Leissa [61] suggests that the concentrated forces acting upon flat
or curved membranes, or concentrated moments acting upon plates and shells, are improper models, and that correct
theoretical analysis indicates that they are meaningless. Examples of sharp corners discussed in Leissa [61] are (1) the
re-entrant corner of a cantilever skew plate, (2) a free circular plate with a V-notch, and (3) the obtuse corners of a
simply-supported parallelogram plate.

Lui and Liew [62] offered the numerical development of the differential quadrature element method (DQEM) for free
vibration analysis of the shear deformable plates in polar coordinates. This is an improvement on the global differential
quadrature method. The formulations of the differential quadrature element method for polar plate vibration element
were derived in detail. The convergence characteristics of the differential quadrature element method for solving the free
vibration of polar plates were examined by Lui and Liew [62]. The reliability and flexibility of the differential quadrature
element method were illustrated by solving several selected example polar plates having discontinuities which were not
solvable directly by the global differential quadrature method. The accuracy of the differential quadrature element method
was evaluated and verified by comparing the present numerical results with the existing exact or approximate solutions, or
the FEM solutions computed using the software package ANSYS (Version 5.3).

McGee et al. [26] offered the first known free vibration data for thin circular plates with clamped V-notches. The
classical Ritz method was employed with two sets of admissible functions assumed for the transverse vibratory
displacements. These sets included: (1) mathematically complete algebraic–trigonometric polynomials which guarantee
convergence to exact frequencies as sufficient terms are retained and (2) corner functions which account for the bending
moment singularities at the sharp corner of the V-notch. Extensive convergence studies confirmed that the corner
functions substantially enhanced the convergence and accuracy of non-dimensional frequencies for circular plates with
clamped notches. Numerical results were obtained for plates having their circular edges completely free. Accurate
(five significant figure) frequencies were reported in McGee et al. [26] for a wide spectrum of notch angles (01, 51, 101, 301,
601, and 901) and depths. For very small notch angles, a rigidly constrained radial crack ensues. Some general findings
revealed that for the spectrum of notch angles examined, the first six frequencies increase as the notch depth increases,
more so in the higher modes than the lower ones. The frequency increase with increasing notch depth was quite
substantial for the semi-circular plates, and for segmented plates with sector angles less than 1801. For a constant notch
depth, it was found that there was a substantial reduction in the first six frequencies as notch angle decreases. Normalized
contours of the transverse vibratory displacement were shown for plates having 901 and 51 notches of various depths
ranging from deep to very shallow. The first known frequencies and mode shapes for sectorial, semi-circular, and
segmented plates with clamped radial edges were also presented as special cases of the title problem.

The first known exact analytical solutions were derived in Huang et al. [22] for the free vibrations of thick (Mindlin)
sectorial plates having simply-supported radial edges and arbitrary conditions along the circular edge. The general
solutions to the Mindlin differential equations of motion contain non-integer order ordinary and modified Bessel functions
of the first and second kinds, and six arbitrary constants of integration. By exercising a careful limiting process, three
regularity conditions at the vertex of the radial edges were invoked to yield three equations of constraint among the six
constants for sector angles exceeding 1801 (re-entrant corners). Three additional linearly independent equations among
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the six constants were obtained by satisfying the three boundary conditions along the circular edge. Frequency
determinant equations were derived in Huang et al. [22] for Mindlin sectorial plates with circular boundaries which
were clamped, simply-supported, or free. Non-dimensional frequency parameters were presented for over a wide
range of salient and re-entrant sector angles (301rar3601) and thickness-to-radius ratios of 0.1, 0.2, and 0.4. Frequency
results obtained for Mindlin sectorial plates were compared to those determined for classically thin sectorial plates, and
the results were found to be considerably different than those derived from thin-plate theory, particularly for the
fundamental frequencies of plates having sector angles slightly greater than 1801 when the circular boundary is free. The
frequencies for 3601 sectorial plates (i.e., circular plates having a hinged crack) were compared with those for complete
circular ones.

McGee et al. [25] and Leissa et al. [63] provided the earliest known free vibration data for circular plates having
V-notches with bending moment singularities at its sharp corner due to the transverse vibratory motion. A theoretical
analysis was undertaken using two sets of admissible displacement functions, (1) algebraic–trigonometric polynomials
and (2) corner functions. These function sets were used with the Ritz method. The first set guarantees convergence
to the exact frequencies as sufficient terms are taken. The second set represents the corner singularities exactly, and
accelerated convergence greatly. Numerical results were given for non-dimensional frequencies of completely free
circular plates having various notch angles and depths. As the notch angle becomes very small, a sharp radial crack ensues.
Convergence studies demonstrated the necessity of adding corner functions to achieve accurate frequencies.
Extensive, accurate (five significant figure) frequencies were presented for the spectrum of notch angles (01, 11, 51, 101,
301, 601, and 901) and depths. The effect of the Poisson ratio on the frequencies in the case of shallow notches was also
investigated. Sharp notches were found to reduce each of the first six frequencies from those of a complete circular
plate, whereas large notch angles increased some of the frequencies. Nodal patterns were shown for plates having
51 notches. The first known frequencies for completely free sectorial, semi-circular, and segmented plates were also given
as special cases.

The present work examines sectorial plates having either a clamped or simply-supported circumferential edge, and all
combinations of clamped, simply-supported, and free radial edges, including stress singularity effects at the sharp vertex
corner. For a very small notch angle, 3601-a (say, one degree or less), a deep, rigidly constrained, hinged, or free radial crack
ensues. In a subsequent section, accurate non-dimensional frequencies are reported as the sector angle a is varied.
Normalized contour plots of the vibratory transverse displacements are also studied for plates having sector angles a=901,
1801 (semi-circular), 2701, 3001, 3301, 3551, and 3601 (sharp radial crack). The Ritz method used to predict these upper
bound approximate solutions on the exact ones is described in the next section wherein the transverse displacement field
is approximated as a hybrid set of trial functions consisting of a complete set of admissible algebraic–trigonometric
polynomials in conjunction with an admissible set of corner functions that exactly model the singular vibratory moments
which exist at the vertices of corner angles (a) which exceed 1801 [25–28].

3. Methodology

Consider the polar coordinates (r, y) originating at the vertex of the sectorial plate of radius, a, shown in Fig. 1. The
transverse vibratory displacement w is defined in terms of these coordinates as follows:

wðr,y,tÞ ¼Wðr,yÞsinot, (1)

where t is time and o is the circular frequency of vibration. The boundary conditions for the various plates studied are
identified according to the lettered edges shown in Fig. 2. Displacement trial functions are assumed as the sum of two finite
sets: W=Wp+Wc, where Wp are algebraic–trigonometric polynomials and Wc are corner functions. The admissible
C

C C C CC

C F FF

F F F

FS S

S SS

C C

C
CC

C
S S

S S F

CCC SFCCFCCSC FFC

CCS CFSCSS SFS FFS

Fig. 2. Sectorial plates with various combinations of clamped, simply-supported, and free edge conditions.
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polynomials for the CCC, CCS, FFC, and FFS plates are written as

Wp ¼ g1ðr,yÞ
XM1

m ¼ 0,2,4

Xm

n ¼ 0,2,4

Amnrm cosnyþ
XM2

m ¼ 1,3,5

Xm

n ¼ 1,3,5

Amnrm cosny

 !
(2)

for the symmetric vibration modes, and

Wp ¼ g1ðr,yÞ
XM3

m ¼ 2,4

Xm

n ¼ 2,4

Bmnrm sinnyþ
XM4

m ¼ 1,3,5

Xm

n ¼ 1,3,5

Bmnrm sinny

 !
(3)

for the anti-symmetric modes, and for the

CCC plate : g1ðr,yÞ ¼ ðr=aÞ2½ðy=aÞ2�ð1=2Þ2�2ða2�r2Þ
2, (4a)

CCS plate : g1ðr,yÞ ¼ ðr=aÞ2½ðy=aÞ2�ð1=2Þ2�2ða2�r2Þ, (4b)

FFC plate : g1ðr,yÞ ¼ ða2�r2Þ
2, (4c)

FFS plate : g1ðr,yÞ ¼ ða2�r2Þ, (4d)

each of which is defined to satisfy the essential boundary conditions along the radial edges (see Fig. 1). Also indicated in
Fig. 1 are datum lines utilized to define the symmetric and anti-symmetric modes (Eqs. (2) and (3)). No symmetry exists for
the CFC, CFS, SCC, SCS, SFC, and SFS plates. Thus,

Wp ¼ g2ðr,yÞ
XM1

m ¼ 0,2,4

Xm

n ¼ 0,2,4

Amnrm cosnyþ
XM2

m ¼ 1,3,5

Xm
n ¼ 1,3,5

Amnrm cosnyþ
XM3

m ¼ 2,4

Xm

n ¼ 2,4

Bmnrm sinnyþ
XM4

m ¼ 1,3,5

Xm

n ¼ 1,3,5

Bmnrm sinny

 !
,

(5)

in which for the

CFC plate : g2ðr,yÞ ¼ ðr=aÞ2ðy=aÞ2ða2�r2Þ
2, (6a)

CFS plate : g2ðr,yÞ ¼ ðr=aÞ2ðy=aÞ2ða2�r2Þ, (6b)

SFC plate : g2ðr,yÞ ¼ ðr=aÞ2ðy=aÞða2�r2Þ
2, (6c)

SFS plate : g2ðr,yÞ ¼ ðr=aÞ2ðy=aÞða2�r2Þ (6d)

and for the CSC and CSS plates,

Wp ¼ g3ðr,yÞ
XM1

m ¼ 0,2,4

Xm

n ¼ 0,2,4

Amnrm cosnyþ
XM2

m ¼ 1,3,5

Xm
n ¼ 1,3,5

Amnrm cosnyþ
XM3

m ¼ 2,4

Xm

n ¼ 2,4

Bmnrm sinnyþ
XM4

m ¼ 1,3,5

Xm

n ¼ 1,3,5

Bmnrm sinny

 !
,

(7)

in which for the

CSC plate : g3ðr,yÞ ¼ ðr=aÞ2ðy=aÞðy=a�1Þ2ða2�r2Þ
2, (8a)

CSS plate : g3ðr,yÞ ¼ ðr=aÞ2ðy=aÞðy=a�1Þ2ða2�r2Þ: (8b)

In Eqs. (2), (3), (5), and (7), Amn and Bmn are arbitrary coefficients, and the values of m and n have been specially chosen
to eliminate those terms which yield undesirable singularities at r=0, and yet, preserve the mathematical completeness of
the resulting series as sufficient terms are retained. Thus, convergence to the exact frequencies is guaranteed when the
series is employed in the present Ritz procedure.

The displacement polynomial Eqs. (2), (3), (5), and (7) should, in principle, yield accurate frequencies. However, the
number of terms required may be computationally prohibitive. This problem is alleviated by augmentation of the
displacement polynomial trial set with admissible corner functions, which introduce the proper singular vibratory
moments at the vertex corner formed by the radial edges (Fig. 1). The set of corner functions is taken as

Wc ¼ GðrÞ
XK

k ¼ 1

CkW*
ck

, (9)

where Ck are arbitrary coefficients, and W*
ck

are solutions of the fourth-order biharmonic, static equilibrium equation for
bending of plates at acute corner angles [27,28]:

W*
ck
ðr,yÞ ¼ rlkþ1½ak sinðlkþ1Þyþbk cosðlkþ1Þyþck sinðlk�1Þyþdk cosðlk�1Þy�: (10)

The essential boundary conditions along the radial edges y= 7a/2 may be clamped [i.e., Wðr,7a=2Þ ¼
1=rð@Wðr,7a=2Þ=@yÞ ¼ 0], simply-supported [i.e., W(r,7a/2)=Mr(r,7a/2)=0], or free [i.e., Vr(r,7a/2)=Mr(r,7a/2)=0],
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where Mr and Vr are the usual radial moment and shear defined elsewhere [1]. These conditions are used in
Eq. (10) to construct a set of algebraic equations from which the values lk are obtained as roots of the vanishing
determinants.

For the symmetric modes of the CCC, CCS, FFC, and FFS plates, ak=ck=0 in Eq. (10), and satisfaction of the clamped–
clamped (C–C) radial edge conditions results in the following characteristic equation for the lk:

sinlka¼�lk sina, (11a)

whereas satisfaction of the free–free (F–F) radial edge conditions yields the alternative characteristic equation

sinlka¼
1�n
3þn lk sina: (11b)

The corresponding corner function for the C–C edge conditions is

W*
ck
ðr,yÞ ¼ rlk þ1 �

cosðlk�1Þa=2

cosðlkþ1Þa=2
cosðlkþ1Þyþcosðlk�1Þy

� �
(12a)

and the corner function for the F–F edge conditions is

W*
ck
ðr,yÞ ¼ rlkþ1

g1k
sinðlk�1Þa=2

g2k
sinðlkþ1Þa=2

cosðlkþ1Þyþcosðlk�1Þy

" #
, (12b)

in which

g1k
¼ lkðn�1Þþð3þnÞ, g2k

¼ ðlkþ1Þðn�1Þ: (12c)

Similarly, for the anti-symmetric modes of the CCC and CCS plates, bk=dk=0 in Eq. (10), and satisfaction of the C–C radial
edge conditions results in the characteristic equation for the lk:

sinlka¼ lk sina (13a)

and for the F–F edge conditions

sinlka¼�
1�n
3þn

lk sina: (13b)

The corner functions used for the anti-symmetric modes are analogous to those defined for the symmetric ones in
Eq. (12), except the cosine functions are changed to sine functions, and vice-versa.

Satisfaction of the hinged–free (S–F) radial edge conditions results in the following characteristic equation for
the lk,

sin2lka¼
n�1

3þn lk sin2a: (14)

The corresponding S–F corner function is

W*
ck
ðr,yÞ ¼ rlkþ1½sinðlkþ1Þy�g1k

cosðlkþ1Þy�g2k
sinðlk�1Þyþg3k

cosðlk�1Þy�, (15)

where

g1k
¼

sinðlkþ1Þa=2

cosðlkþ1Þa=2
, (16a)

g2k
¼
ðlkþ1Þðn�1Þ

lkðn�1Þþð3þnÞ
sinðlkþ1Þa=2

sinðlk�1Þa=2
, (16b)

g3k
¼
ðlkþ1Þðn�1Þ

lkðn�1Þþð3þnÞ
sinðlkþ1Þa=2

cosðlk�1Þa=2
: (16c)

Imposition of the clamped–hinged (C–S) radial edge conditions yields the characteristic equation for the lk,

sin2lka¼ lk sin2a (17)

and the corresponding C–S corner function

W *
ck
ðr,yÞ ¼ rlk þ1 sinðlkþ1Þy�

sinðlkþ1Þa=2

cosðlkþ1Þa=2
cosðlkþ1Þy�

sinðlkþ1Þa=2

sinðlk�1Þa=2
sinðlk�1Þyþ

sinðlkþ1Þa=2

cosðlk�1Þa=2
cosðlk�1Þy

� �
: (18)

Finally, the characteristic equation in lk for the clamped–free (C–F) radial edges is

sin2lka¼
4

ð1�nÞð3þnÞ
�

1�n
3þn

l2
k sin2a (19)

and the associated C–F corner function is

W*
ck
ðr,yÞ ¼ rlkþ1½sinðlkþ1Þyþz1k

cosðlkþ1Þyþz2k
sinðlk�1Þyþz3k

cosðlk�1Þy� (20)
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with

z1k
¼
m1k

dk
, z2k

¼
m2k

dk
, z3k

¼
m3k

dk
, (21a)

m1k
¼ ðlk�1ÞZ2k

sinðlkþ1Þ
a
2
�ðlkþ1ÞZ1k

cosðlkþ1Þ
a
2

sinðlk�1Þaþðlk�1ÞZ1k
sinðlkþ1Þ

a
2

cosðlk�1Þa, (21b)

m2k
¼ ðlkþ1Þ Z1k

cosðlk�1Þ
a
2
�Z2k

cosðlk�1Þ
a
2

cosðlkþ1Þa�Z3k
sinðlk�1Þ

a
2

sinðlkþ1Þa
h i

, (21c)

m3k
¼ ðlkþ1Þ Z1k

sinðlk�1Þ
a
2
þZ2k

sinðlk�1Þ
a
2

cosðlkþ1Þa�Z3k
cosðlk�1Þ

a
2

sinðlkþ1Þa
h i

, (21d)

dk ¼ ðlk�1ÞZ2k
cosðlkþ1Þ

a
2
�ðlkþ1ÞZ1k

sinðlkþ1Þ
a
2

sinðlk�1Þa�ðlk�1ÞZ1k
cosðlkþ1Þ

a
2

cosðlk�1Þa, (21e)

in which

Z1k
¼ lkðn�1Þþð3þnÞ, Z2k

¼ ðlkþ1Þðn�1Þ, Z3k
¼ ðlk�1Þðn�1Þ: (21f)

For the CCC, FFC, CFC, SFC, and CSC plates, the boundary function G(r)=(a2
�r2)2 in Eq. (9), whereas for the CCS, FFS, CFS,

SFS, and CSS plates, G(r)=(a2
�r2). Some of the lk obtained from Eqs. (11), (13), (14), (17), and (19) may be complex

numbers, and thus, result in complex corner functions. In such cases, both the real and imaginary parts are used as
independent functions in the present Ritz procedure outlined below. Although the same analytical procedure may be
followed for SSC and SSS plates [20], an exact solution has been developed for cases when the two radial edges are simply-
supported [21].

In employing the Ritz method for free vibration problems, one has to construct the following frequency equations
which, for the symmetric modes, are:

@

@Amn
ðVmax�TmaxÞ ¼ 0,

@

@Ck
ðVmax�TmaxÞ ¼ 0 (22)

and similarly for the anti-symmetric modes, using Bmn in place of Amn. In Eqs. (22), the maximum strain energy, Vmax, in the
plate due to bending in a vibratory cycle is

Vmax ¼
D

2

ZZ
A
½ðwrþwyÞ

2
�2ð1�nÞðwrwy�w2

ryÞ� dA, (23)

where dA=r dr dy, D=Eh3/12(1�n2) is the flexural rigidity, h is the plate thickness, E is Young’s modulus, n is Poisson’s ratio,
and wr, wy, and wry are the maximum bending and twisting curvatures (sin ot=1 assumed in Eq. (1)):

wr ¼
@2W

@r2
, wy ¼

1

r

@W

@r
þ

1

r2

@2W

@y2
, wry ¼

@

@r

1

r

@W

@y

� �
: (24)

The maximum kinetic energy is

Tmax ¼
ro2

2

ZZ
A
W2 dA, (25)

where r is the mass per unit area of the plate. The required area integrals in the dynamical energy Eqs. (23) and (25) are
performed numerically, otherwise exact integrals are tractable when lk is real.

Substituting Eqs. (2)–(9), (12), (15), (16), (18), (20), and (21) into (22)–(25) yields a set of homogeneous algebraic
equations involving the coefficients Amn (or Bmn) and Ck. The roots of the vanishing determinant of these equations are a set
of eigenvalues, which are expressed in terms of the non-dimensional frequency parameter oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
commonly used in

the plate vibration literature. Eigenvectors involving the coefficients Amn (or Bmn) and Ck are determined in the usual
manner by substituting the eigenvalues back into the homogeneous equations. Normalized contours of the associated
mode shapes may be depicted on a r�y grid in the sector plate domain, once the eigenvectors are substituted into Eqs. (2),
(3), (5), (7), and (9).

4. Convergence studies

Having outlined the Ritz procedure employed in the present analysis, it is now appropriate to address the important
question of convergence rate of frequencies, as various numbers of algebraic–trigonometric polynomials and corner
functions are retained. In this section, convergence studies are summarized for sectorial plates with a 301 notch angle
(i.e., a=3301). All of the frequency and mode shape data shown in the present and following sections are for materials
having a Poisson’s ratio (n) equal to 0.3. Numerical calculations of all vibratory frequencies and mode shapes
were performed on an IBM/RS-6000 970 power-server with an IBM/RS-6000 340 workstation cluster using double
precision (14 significant figure) arithmetic.
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Consider the first six non-dimensional frequencies oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
for the CFC (Table 1) and SFS (Table 2) sectorial plates

(a=3301). Numerical results are shown as 40, 60, 84, and 112 polynomial terms are retained in Eqs. (2), (3), (5), or (7), in
conjunction with 0, 1, 5, 10, 15, and 20 corner functions employed in Eq. (9). In these cases a larger number of polynomial
terms is required due to the absence of symmetry of edge conditions.

As indicated in Table 1, the lowest frequency mode of a CFC plate exhibits a slow upper bound monotonic decrease of
oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
to an inaccurate value of 23.200, as the number of polynomial terms (Wp) is increased with no corner functions.

That is, the polynomial series, albeit complete, is converging very slowly. An examination of the next five rows of data
reveals that an accurate value to five significant figures is 20.973. Interestingly, a trial set consisting of a single corner
function (corresponding to the lowest lk) along with a smaller number of 84 polynomial terms yields an upper bound
oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
value of 23.170 which is slightly lower than the 23.200 value obtained with 112 polynomial terms and no corner

functions. With larger trial sets of 84 polynomials and 10 corner functions, three significant figure convergence of the
lowest frequency mode is achieved. One can clearly see that by adding the first 20 corner functions to as few as 40
polynomials yields the value of 20.978, which is exact to four significant figures. For mode 2 it is seen that the addition of
corner functions improves the convergence even more. Tables 1 and 2 explain similar levels of convergence accuracy in the
oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
values achieved by using hybrid trial sets of admissible polynomials and corner functions apropos to sectorial

plates with various boundary conditions. It should be noted that the CFC (Table 1) and SFS (Table 2) cases are the two of the
most challenging convergence studies (with regard to the number of corner functions required) among the ten problems
analyzed here, and that the other boundary condition cases required fewer corner functions to achieve the proper
convergence of frequencies.
Table 1

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
for a sectorial plate having clamped–free radial edges and clamped circumferential edge (a=3301,

n=0.3).

Mode no. No. of corner functions Total number of terms in Wp

40 60 84 112

1 0 23.753 23.528 23.343 23.200

1 23.475 23.321 23.170 23.046

5 21.299 21.240 21.200 21.168

10 20.989 20.980 20.977 20.975

15 20.979 20.976 20.974 20.973

20 20.978 20.975 20.974 20.973

2 0 28.773 27.884 27.190 26.700

1 23.815 23.638 23.518 23.429

5 22.659 22.602 22.565 22.540

10 22.440 22.437 22.436 22.435

15 22.438 22.436 22.435 22.435

20 22.438 22.436 22.435 22.435

3 0 33.786 32.660 31.911 31.349

1 33.401 32.226 31.458 30.897

5 27.186 27.134 27.104 27.082

10 26.992 26.988 26.985 26.983

15 26.984 26.982 26.981 26.980

20 26.984 26.981 26.980 26.980

4 0 41.849 40.181 39.094 38.298

1 41.825 40.154 39.069 38.275

5 34.672 34.581 34.513 34.465

10 34.221 34.205 34.196 34.190

15 34.192 34.186 34.183 34.181

20 34.188 34.184 34.182 34.180

5 0 50.400 48.224 46.927 46.032

1 50.277 48.066 46.790 45.918

5 44.937 44.307 43.921 43.664

10 42.477 42.438 42.415 42.402

15 42.390 42.384 42.380 42.378

20 42.382 42.380 42.378 42.377

6 0 59.704 57.256 55.836 54.882

1 59.575 57.184 55.801 54.867

5 57.282 55.286 54.192 53.513

10 51.635 51.528 51.478 51.499

15 51.454 51.428 51.415 51.407

20 51.420 51.409 51.403 51.400



Table 2

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
for a sectorial plate having simply-supported-free radial edges and simply-supported circumferential

edge (a=3301, n=0.3).

Mode no. No. of corner functions Total number of terms in Wp

40 60 84 112

1 0 13.215 13.080 12.987 12.925

1 12.986 12.835 12.729 12.658

5 12.504 12.482 12.467 12.459

10 12.454 12.451 12.449 12.448

15 12.450 12.449 12.448 12.447

20 12.449 12.448 12.448 12.447

2 0 16.399 16.061 15.850 15.700

1 16.029 15.758 15.581 15.453

5 14.195 14.176 14.165 14.159

10 14.147 14.147 14.147 14.146

15 14.147 14.147 14.146 14.146

20 14.147 14.147 14.146 14.146

3 0 21.290 20.503 20.007 19.664

1 17.436 17.314 17.254 17.224

5 17.215 17.179 17.157 17.145

10 17.137 17.134 17.132 17.131

15 17.133 17.132 17.131 17.131

20 17.132 17.131 17.131 17.131

4 0 25.435 24.929 24.585 24.347

1 24.929 24.579 24.333 24.162

5 23.503 23.484 23.471 23.465

10 23.466 23.462 23.459 23.458

15 23.460 23.459 23.458 23.457

20 23.458 23.458 23.458 23.457

5 0 35.168 33.237 32.322 31.813

1 35.147 33.234 32.321 31.810

5 30.804 30.715 30.666 30.640

10 30.628 30.619 30.614 30.612

15 30.612 30.611 30.610 30.610

20 30.610 30.610 30.610 30.610

6 0 39.573 39.145 38.925 38.801

1 39.554 39.133 38.921 38.800

5 38.606 38.567 38.555 38.549

10 38.575 38.547 38.543 38.541

15 38.546 38.542 38.540 38.540

20 38.542 38.540 38.540 38.540
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5. Frequencies and mode shapes

Tables 3 and 4 summarize the results of extensive convergence studies of the least upper bound frequency parameters
oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
for the first six modes of sectorial plates with increasing sector angles a=901, 1801, 2701, 3001, 3301, 3501, 3551,

and 3601. Listed in Table 3 are frequency parameters for sectorial plates having combinations of clamped, simply-
supported, and free radial edge conditions along with a clamped circumferential edge (i.e., CCC, SCC, CFC, SFC, and FFC),
whereas shown in Table 4 are frequency data for plates with the same radial edge conditions and a simply-supported
circumferential edge (i.e., CCS, SCS, CFS, SFS, and FFS). Plates having both radial edges simply-supported are omitted, for
accurate frequencies were presented by Huang et al. [21]. Frequency parameters corresponding to the anti-symmetric
modes are indicated by a superscript asterisk (n) as appropriate to the CCS, CCC, FFS, and FFC plates. All frequency results
are guaranteed upper bounds to exact values (typically accurate to the five significant figures shown in Tables 3 and 4).
Hence, Tables 3 and 4 provide an accurate database of frequencies for sectorial plates having various edge conditions and
notch angles against which future results using experimental or theoretical methods (such as finite element analysis) may
be compared. Frequencies of sectorial plates having free circumferential edges are available (see [21,24,26]).

A slight deterioration in the convergence of oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
may occur for large Wp+Wc, which is attributed to the onset of

matrix ill-conditioning due to round-off errors. It should be noted that the associated eigenvalue problem is positive
definite, and thus, the frequency data shown in Tables 3 and 4 were obtained by using a QL algorithm combined with
Cholesky factorization [64,65]. For large trial sets of polynomials and corner functions, however, the mass operator
employed in the above QL algorithm may become ill-conditioned. Hence, a small amount of the data in Tables 3 and 4 were



Table 3

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
for sectorial plates having arbitrary radial edge conditions and clamped circumferential edge (n=0.3).

Case a (deg.) Mode number

1 2 3 4 5 6

CCC 90 48.786 87.774a 104.88 136.93 164.57a 180.71

180 28.125 41.726a 58.677 71.950 78.375a 94.924a

270 23.743 30.041a 39.399 50.241a 62.192 64.352

300 23.246 28.005a 35.967 45.278a 55.590 63.347

330 22.956 26.455a 33.277 41.389a 50.383 60.147a

350 22.834 25.630a 31.790 39.238a 47.506 56.473a

355 22.810 25.447a 31.450 38.745a 46.848 55.634a

360 22.789 25.275a 31.133 38.287a 46.269 54.897a

CSC 90 41.726 78.375 94.922 125.20 151.87 167.87

180 25.271 38.269 54.821 67.367 74.000 89.655

270 22.575 27.884 37.143 47.787 59.588 62.368

300 22.432 26.074 33.974 43.149 53.296 62.011

330 22.376 24.718 31.481 39.506 48.368 57.995

350 22.358 24.025 30.100 37.487 45.644 54.494

355 22.355 23.875 29.783 37.025 45.020 53.691

360 22.351 23.736 29.478 36.578 44.419 52.919

CFC 90 26.476 52.109 69.078 91.503 113.00 131.60

180 21.501 29.295 43.458 59.486 61.193 74.420

270 21.122 23.566 30.964 40.603 51.460 59.255

300 21.083 22.811 28.724 37.010 46.375 56.688

330 20.973 22.435 26.980 34.180 42.377 51.400

350 20.880 22.326 26.028 32.610 40.161 48.466

355 20.858 22.309 25.813 32.251 39.653 47.795

360 20.837 22.296 25.606 31.903 39.163 47.147

SFC 90 19.660 45.088 57.666 82.477 102.42 115.45

180 19.185 26.103 40.054 56.078 56.853 69.434

270 20.629 21.420 28.825 38.315 49.013 59.368

300 20.002 21.475 26.724 34.992 44.241 54.366

330 19.669 21.842 25.075 32.367 40.488 49.375

350 19.622 22.018 24.146 30.903 38.402 46.594

355 19.629 22.054 23.930 30.566 37.924 45.956

360 19.646 22.112 23.726 30.241 37.461 45.341

FFC 90 7.5632 24.760a 31.991 56.561 67.925a 77.195

180 8.6013 19.660a 28.857 36.329 45.088a 57.665a

270 9.3280 18.814a 22.799 32.036a 37.029 42.016

300 9.4879 18.847a 21.720 29.610a 36.634 39.031

330 9.6137 18.972a 20.932 27.675a 34.638 38.378

350 9.6806 19.096a 20.534 26.585a 33.148 38.392

355 9.6955 19.131a 20.449 26.334a 32.795 38.406

360 9.7094 19.167a 20.370 26.096a 32.457 38.421

a Anti-symmetric modes.
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obtained by using an eigenvalue extraction algorithm employing two numerical techniques: (i) a householder reduction of
the dynamical matrices to bi-diagonal form with matrix diagonalization achieved by using a QL procedure with shifts
[64,65] and (ii) a singular value decomposition technique (cf. Press et al. [66]) using a threshold (matrix-conditioning)
number of 10�35. In spite of the ill-conditioning, convergence (to at least four and sometimes five significant figures) is
achieved for the first six non-dimensional frequencies presented in Tables 3 and 4.

As can be expected, the frequency parameters of sectorial plates having a clamped circumferential edge are higher than
those having a simply-supported circumferential edge for all combinations of radial edge conditions. Generally speaking,
one can conclude from Tables 3 and 4 that for the first six modes oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
decreases as the sector angle a increases. Slight

exceptions to this trend is shown in the first and second modes of the SFC and SFS plates, the second and sixth modes of the
FFC plate, and the second mode of the FFS plate, all of which exhibit a slight decrease, followed by a slight increase in
oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
with decreasing a. However, a major exception to the trend occurs for the fundamental (i.e., lowest) frequencies

of the FFC and FFS plates, which increase monotonically as a increases. In these cases the sole support of the plate is along
its circular boundary, and the length of this support increases as a increases, which increases the stiffness of the plate. The
higher modes have radial node lines, which are equivalent to additional supports.

The frequency results for a=3601 are special cases of circular plates having what is described here as a rigidly
constrained, hinged, or free sharp radial crack. It is seen in Tables 3 and 4 that only a small difference in oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
exists

between a rigidly constrained, hinged, or free narrow V-notch (a=3551) and a sharp radial crack (a=3601).



Table 4

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
for sectorial plates having arbitrary radial edge conditions and simply-supported circumferential edge (n=0.3).

Case a (deg.) Mode number

1 2 3 4 5 6

CCS 90 37.457 72.951a 88.711 118.71 144.45a 159.53

180 19.504 31.431a 46.601 58.548 64.544a 79.602a

270 15.777 21.252a 29.442 39.092a 49.854 51.669

300 15.348 19.503a 26.436 34.672a 43.916 50.743

330 15.093 18.175a 24.092 31.229a 39.247 48.046a

350 14.985 17.471a 22.802 29.333a 36.679 44.733a

355 14.963 17.314a 22.508 28.900a 36.093 43.977a

360 14.943 17.167a 22.232 28.496a 35.558 43.348a

CSS 90 31.431 64.545 79.607 107.97 132.65 147.55

180 17.164 28.481 43.247 54.386 60.675 74.758

270 14.830 19.454 27.527 36.973 47.591 49.861

300 14.690 17.900 24.754 32.846 41.922 49.536

330 14.631 16.737 22.585 29.624 37.506 46.167

350 14.610 16.140 21.389 27.847 35.077 43.011

355 14.606 16.010 21.115 27.441 34.522 42.288

360 14.603 15.889 20.851 27.049 33.987 41.595

CFS 90 18.049 40.965 55.916 76.896 96.430 113.46

180 13.828 20.707 33.180 47.359 49.023 60.807

270 13.504 15.748 22.161 30.648 40.349 47.040

300 13.478 15.085 20.214 27.470 35.789 45.061

330 13.402 14.733 18.703 24.982 32.224 40.293

350 13.335 14.620 17.881 23.606 30.257 37.657

355 13.319 14.601 17.695 23.292 29.807 37.057

360 13.303 14.585 17.516 22.988 29.373 36.476

SFS 90 12.498 34.872 45.608 68.868 86.609 98.448

180 11.989 18.022 30.269 44.265 45.254 56.285

270 13.358 13.672 20.368 28.696 38.228 47.212

300 12.758 13.840 18.555 25.763 33.954 43.035

330 12.447 14.146 17.131 23.457 30.610 38.540

350 12.391 14.291 16.329 22.177 28.760 36.044

355 12.393 14.321 16.144 21.883 28.337 35.474

360 12.405 14.373 15.968 21.600 27.928 34.924

FFS 90 2.4426 17.167a 23.046 45.387 54.921a 63.235

180 3.5149 12.498a 20.593 26.707 34.871a 45.608a

270 4.1463 11.708a 15.264 23.221a 27.380 31.993

300 4.2826 11.723a 14.319 21.089a 27.172 29.189

330 4.3902 11.818a 13.626 19.392a 25.512 28.500

350 4.4481 11.916a 13.274 18.441a 24.200 28.512

355 4.4610 11.945a 13.198 18.223a 23.888 28.525

360 4.4735 11.974a 13.129 18.015a 23.590 28.539

a Anti-symmetric modes.
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Shown in Figs. 3–7 are normalized displacement contours for the first three modes of sectorial plates with various
boundary conditions for a=901, 1801, 2701, 3001, 3301, 3551, and 3601. These contour plots are normalized with respect to
the maximum transverse displacement component (i.e., �1rW=Wmaxr1, where the negative values of W/Wmax are
depicted as dashed contour lines in Figs. 3–7, and the non-dimensional frequencies shown correspond to the data listed in
Tables 3 and 4). Contour lines are shown for W/Wmax= 70.2, 70.4, 70.6, 70.8, and 71. Nodal patterns of each mode are
shown in Figs. 3–7 as darker contour lines of zero displacement (W/Wmax=0) during vibratory motion.

For CCC, CCS, FFC, and FFS sectorial plates, a horizontal nodal line passes through the vertex of the notch in the
anti-symmetric mode 2. Thus, the singular vibratory stresses caused by the notch effect are considerably less, and fewer
corner functions are required to achieve sufficiently accurate convergence of these modes. It is seen that a sharp notch
(a=3551) causes almost radial nodal lines extending from the vertex of the notch to the circumferential edge in the
symmetric mode 3 of the CCC, CCS, FFC, and FFS sectorial plates. Interestingly, the radial nodal lines in the symmetric mode
3 shift slightly away from the vertex of a 901 notch (a=2701) in these cases.

The normalized displacement contours of the FFC and FFS plates are not substantially influenced by the decrease
in notch angle from 901 to 51 (see Fig. 7). In contrast, the lowest frequency (i.e., fundamental) symmetric mode of the CCC
and CCS plates appear to be more strongly influenced by the notch angle than the anti-symmetric mode 2 and symmetric
mode 3. In the fundamental mode, the sharp curvature and distortion of the nodal lines is quite apparent due to the notch
effect, more so for the CCS plate than the CCC one. Given the absence of symmetry in the CSC and CSS displacement



α 
(deg.) 

CCSCCC
Mode Number Mode Number

90

180 

270 

300 

330 

355 

360 

1 2 3 1  2  3 

43.786  87.774  104.88  37.457 72.951 88.711 

28.125 41.726  58.677  19.504 31.431  46.601 

23.743 30.041  39.399 15.777 21.252 29.442 

23.246  28.005 35.967  15.348 19.503  26.436 

22.956  26.455 33.277  15.093  18.175  24.092 

22.810  25.447 31.450  14.963 17.314 22.508 

22.789 25.275 31.133 14.943 17.167 22.232 

Fig. 3. Normalized transverse displacement contours (W/Wmax) for the first three modes of CCC and CCS sectorial plates.
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contours, their nodal patterns are rotated slightly in the clockwise direction in relation to the nodal patterns of the CCC and
CCS plates, respectively. As one examines the normalized displacement contours of the SFC, SFS, CFC, and CFS plates, the
absence of symmetry is clear. It is interesting to note that the fundamental mode shapes for the SFC and SFS plates (Fig. 6)
with aZ2701 have one nodal line, which is nearly radial, whereas the second mode shapes have none. Moreover, for the
901 notch (a=2701), the fundamental nodal patterns of the CFC and CFS plates (Figs. 3–7) are similar to those associated
with mode 2 of the SFC and SFS plates (Figs. 3–7), and vice-versa. It can also be seen that mode 3 of the CFC and CFS plates



α 
(deg.) 

CSSCSC
Mode Number Mode Number

90 

180 

270 

300 

330 

355 

360 

1 2 3 1 2  3 

41.726 78.375  94.922  31.431 64.545  79.607 

25.271 38.269  54.821 17.164 28.481  43.274 

22.575  27.884 37.143 14.830 19.454  27.527 

22.432  26.074 33.974 14.690  17.900 24.754 

22.376 24.718 31.481  14.631  16.737  22.585 

22.355 23.875  29.783  14.606 16.010 21.115 

22.351 23.736  29.478 14.603  15.889  20.815 

Fig. 4. Normalized transverse displacement contours (W/Wmax) for the first three modes of CSC and CSS sectorial plates.
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are analogous to mode 3 of the SFC and SFS plates, except that the horizontal radial nodal line of the former plates appears
slightly rotated from the horizontal in the clockwise direction in the latter plates. Across the board in Figs. 3–7, the W/Wmax

contours and nodal patterns of the sectorial plates are only slightly changed by the clamped or simply-supported
circumferential edge conditions. As expected, the contour lines W/Wmax= 70.2 occur closer to a simply-supported
circumferential edge than a clamped one, since in the latter both the normal displacement [W(a,y)] and the bending slope
[qW(a,y)/qr] vanish.



α 
(deg.) 

CFSCFC
Mode Number Mode Number

90

180 

270 

300 

330 

355 

360 

1 2  3 1 2  3 

26.476 52.109  69.078  18.049 40.965  55.916 

21.501  29.295 43.458 13.828  20.707  33.180 

21.122 23.566 30.964 13.504 15.748 22.161 

21.083  22.811 28.724 13.478  15.085  20.214 

20.973 22.435  26.980  13.402 14.733 18.703 

20.858 22.309  25.813  13.319  14.601  17.695 

20.837 22.296 25.606 13.303 14.585 17.516 

Fig. 5. Normalized transverse displacement contours (W/Wmax) for the first three modes of CFC and CFS sectorial plates.

O.G. McGee III et al. / Journal of Sound and Vibration 329 (2010) 5563–5583 5579
6. Concluding remarks

Highly accurate frequencies and mode shapes for sectorial plates with a clamped or simply-supported circumferential
edge and arbitrary (i.e., clamped, simply-supported, or free) radial edges have been obtained using a Ritz procedure in
conjunction with classical thin-plate theory. In this approximate procedure, the assumed transverse displacement of the
plate constitutes a hybrid set of complete algebraic–trigonometric polynomials along with corner functions that account
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 Mode Number Mode Number

90

19.660
180 

19.185
270 

20.629 
300 

20.002
330 

19.669 
355 

19.629
360 

19.646

1 12 23 3

45.60834.87212.498 57.66645.088

30.26918.02211.98940.054 26.103

20.36813.67213.35828.82521.420

18.55513.84012.758 26.72421.475

17.13114.14612.44725.07521.842

16.144 14.32112.39323.93022.054

15.96814.37312.40523.72622.112

Fig. 6. Normalized transverse displacement contours (W/Wmax) for the first three modes of SFC and SFS sectorial plates.
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for singular bending moments at the vertices of acute corner angles. The efficacy of such corner functions has been
substantiated by an extensive convergence study of non-dimensional frequencies of clamped and simply-supported
sectorial plates having all combinations of boundary conditions on the radial edges.

Detailed numerical tables have been presented, showing the variations of non-dimensional frequencies (accurate to at
least four significant figures) over a wide range of vertex angles a. No results were given for the SSC or SSS cases for they
exist elsewhere [20,21]. On the whole, the numerical findings reveal that the constrained radial edges, including
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 FFSFFC
Mode Number Mode Number

1 1
90

7.5632 
180 

8.6013 
270 

9.3280 
300 

9.4879 
330 

9.6137 
355 
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360 
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24.760 31.991 2.4426 17.167 23.046

19.660 28.857 3.5149 12.498 20.593

18.814 22.799 4.1463 11.708 15.264

18.847 21.720 4.2826 11.723 14.319

18.972 20.932 4.3902 11.818 13.626

19.131 20.449 4.4610 11.945 13.198

19.167 20.370 4.4735 11.974 13.129

Fig. 7. Normalized transverse displacement contours (W/Wmax) for the first three modes of FFC and FFS sectorial plates.
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singularity effects, causes the first six oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
values to decrease as the sector angle a increases. This frequency decrease

is observed to a larger extent in the higher modes than in the lower ones. Some exceptions to this overall trend have been
discussed in the previous section.

A fundamental conclusion explicating the title problem is that the large bending moment stresses in the neighborhood
of the vertices of clamped, simply-supported, or free radial edges of vibrating sectorial plates do indeed significantly
influence the frequencies.
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Besides this, some new understanding has been offered here about the mode shapes of sectorial plates with clamped, simply-
supported, or free circumferential and radial edges. As one examines the nodal patterns and normalized transverse displacement
contours of the sectorial plates presented herein, it can be seen that a deep wide notch (a=2701) or sharp crack (a=3551) causes
noticeably distorted and complicated nodal lines in the first three modes. Generally speaking, for a41801 highly localized
bending stresses at the vertex of rigidly constrained, hinged, or free radial edges of sectorial plates may become detrimental in
connection with vibration. This is because the singular stresses at the constrained vertex of sectorial plates with aZ3551 can
become quite serious during vibration by constituting an origin for crack propagation during fatigue. Reinforcement and repair of
such crack propagation and growth with a rigid material or hinge may serve to increase the plate resistance somewhat to localized
fatigue stresses during transverse vibration. Of course, it must be realized that it is not possible to produce perfectly sharp notches
in plates. That is, the boundary curvature at the notch vertex will always be finite, instead of infinite. Then the vibratory bending
stresses will also remain finite. Nevertheless, numerical frequencies from the present study should closely approximate those of
non-sharp notches, if the notch radii are very small.

The present variational Ritz approach is computationally effective for modeling the unbounded vibratory stresses,
which exist at the sharp vertex corners of constrained radial edges of sectorial plates. There is a need for future
investigators to consider other types of edge conditions (e.g. edges with translational and rotational constraints). Some
fundamental mechanics understanding of the effect of these localized stresses on constrained sectorial plate dynamics can
be obtained through careful examination of the frequency and mode shape data reported herein. A point of methodological
procedure is that investigators using continuum-based and discrete element-based formulation will have difficulty in
calculating accurate solutions to the title problem unless they explicitly consider in the assumed displacement or stress
fields the moment singularities at the sharp re-entrant corner (a41801). Most of all, the accurate vibration data presented
here serves as benchmark values for comparison with data obtained using modern experimental and alternative
theoretical approaches.
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